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Abstract. The class of short-range potentialsV [M](x) = ∑M
m=2(fm + gm sinhx)/ coshm x is

considered as an asymptotically vanishing phenomenological alternative to the popular anharmonic
long-rangeV (x) = ∑N

n=2 hnx
n. We propose a method which parallels the analytic Hill–

Taylor description of anharmonic oscillators and represents all the wavefunctionsψ [M](x) non-
numerically, in terms of certain infinite hypergeometric-like series. In this way the well known
exactM = 2 solution is generalized to anyM > 2.

1. Introduction

A routine numerical solution of anasymmetricSchr̈odinger bound-state problem on the line
x ∈ (−∞,∞) requires a careful verification [1]. One needs non-numerical asymmetric
models. For this purpose we may use the shifted harmonic oscillator, Morse’s well and the
two scarf-shaped hyperbolic forces. All of these models (cf table 1) are listed in the review
[2] as possessing thecompletesolution in closed form.

Table 1. Shape-invariant potentials on the line [2].

Model V (x) V (−∞) V (∞) Polynomialψ(x)

Harmonic ω2(x + b)2 ∞ ∞ Laguerre
Morse ae−x + be−2x ∞ 0 Laguerre
Rosen–Morse II f/ cosh2 x + g tanhx −g g Jacobi
Scarf II (f + g sinhx)/ cosh2 x 0 0 Jacobi

There existincompletelysolvable polynomialsV (x) = ax+bx2 + · · ·+zxN [3] and multi-
exponentialsV (x) = ae−x +be−2x + · · ·+ze−Nx [4]. They extend the possible tests and further
non-numerical applications beyondN = 2. In a puzzling contrast, a natural generalization

V [M](x) =
M∑
m=2

fm

coshm x
+ sinhx

M∑
n=1

gn

coshn x
(1)

of the remaining two items in table 1 is not amenable to a similar elementary treatment [5]. This
distracts attention from the hyperbolic oscillators (1) in spite of their obvious phenomenological
as well as purely mathematical appeal.

In the present paper we shall return to several formal as well as descriptive parallels
between the separate items in table 1. On their basis we shall propose and describe a new
semianalytic approach to the ‘neglected’ family (1).

0305-4470/00/081647+13$30.00 © 2000 IOP Publishing Ltd 1647



1648 M Znojil

In section 2 we recall the harmonic and Morse oscillators and theirN > 2 generalizations
as our overall methodical guide. In the language of the well known Lanczos method [6] we
underline the key role of simplicity of the repeated action of the Hamiltonian upon a suitable
trial state|0〉. An appropriate choice of this initial ket vector is able to inspire some of the
existing non-numerical power-series solutions. In this setting the Lanczos approach is shown
to find its natural reincarnations in the well known method of Hill determinants [7] as well as
in the symmetric Jost-solution method of [8].

In section 3 we show how the latter two examples pave the way towards equation (1) with
anyM > 2. Fully parallel to the polynomial case we construct the asymptotically correct
bound state solutions which all retain a recurrently defined power-series structure. Via an
appropriateD-dimensional partitioning of the basis we preserve their connection to the two
remaining exactly solvable hyperbolicM = 2 examples of table 1.

Section 4 illustrates the technical details at the first non-trivialD = 2. We contemplate
there a spatially antisymmetricM = 2 exercise (1) usingf2 = g1 = 0. We detail the proof
of the pointwise convergence of our ‘partitioned hypergeometric’ wavefunctions. We show
how the symmetry considerations significantly simplify the construction and matching of our
wavefunctions near the origin.

Section 5 adds a short summary.

2. The method

2.1. Wavefunctions in the Lanczos basis

The Lanczos numerical eigenvalue method [6] works with a set{|n〉} of the basis ket vectors
which are generated via a repeated action of the HamiltonianH upon an initial vector|0〉. In a
slight generalization of this procedure one has to assume that the action of the full Schrödinger
operatorH − z upon each ket|n〉 may be represented as a linear superposition over the same
set of the kets [9],

(H − z)|n〉 = |0〉 ·Q0,n(z) + |1〉 ·Q1,n(z) + · · · . (2)

With a matrix of functionsQm,n(z) (cf [10], p 257) we may abbreviate[
(H − z)|0〉, (H − z)|1〉, . . . ] ≡ (H − z) [ |0〉, |1〉, |2〉, . . . ] ≡ (H − z) |X}

(H − z) |X} = |X} ·Q(z)
and solve any linear homogeneous equation(H − E)|y〉 = 0 by the ansatz

|y〉 =
∞∑
n=0

|n〉hn ≡ |X} Eh. (3)

Provided that the separate Lanczosean kets are linearly independent the resulting identity
|X}Q(z)Eh = 0 may be interpreted as a system of conditions

Q(E)Eh = 0. (4)

The practical applicability of this recipe relies upon several tacit assumptions. Most often
one chooses the set{|n〉} as a common harmonic oscillator basis [11]. It is orthonormal
({X|X} = I ) and complete (|X}{X| = Id) and we may truncate the linear set (4) to the mere
routine matrix diagonalization

M∑
n=0

[Q(0)− EI ]m,n hn = 0 m = 0, 1, . . . ,M M� 1. (5)
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This is a textbook variational recipe and its secular equation

detQ(E) = 0 (6)

determines the spectrum numerically [12].
A non-variational and less numerical modification of the construction may be based on a

more sophisticated choice of the Lanczos basis. Various linear algebraic algorithms of such
a type are used to solve various Schrödinger equations in applications [13]. Let us recall two
examples as our methodical guide.

2.2. Anharmonic example

Both the above-mentioned multi-exponential and polynomial oscillators prove mutually
equivalent after a change of variables [14]. Their ‘canonical’ [15] representation

V (x) = g−1

r2
+ g1r

2 + g2r
4 + g3r

6 + · · · + g2N−1r
4N−2 r ∈ (0,∞) (7)

is easily tractable by the variational algorithms. In the less numerical power-series approaches
[16] the harmonic kets are being replaced by the powers〈r|n〉 = 〈r|0[HO]〉 · rn. This leads to
an asymmetric matrixQ(z). Its linear algebraic equation (4) often proves solvable as a very
simple recurrent specification of the coefficientshn in equation (3) (cf [17] for more details).

An even more ambitious reduction ofQ may be achieved after an anharmonic choice of
the initial |0〉. According to Magyari [3] this assigns a few elementary bound-state solutions
to many multi-exponential and polynomial potentials at certain exceptional couplings. At
arbitrary couplings and energies the same option|0〉 may provide an extremely compact
infinite-dimensional algebraic secular equation (4). For illustration let us consider the famous
sextic oscillator example of [18]. WithN = 2 in equation (7), denotingg3 = 16α2 and
g2 = 16αβ and using the WKB-inspired postulate

〈r|n〉 = rn+`+1e−αr
4−βr2

α > 0 (8)

we obtain the tridiagonal quasi-Hamiltonian

Q(E) =


α0 γ1 0 0 . . .

β0 α1 γ2 0 . . .

0 β1 α2 γ3 . . .

. . .
. . .

. (9)

Its equation (4) may safely be interpreted as an infinite-dimensional limit of the truncated
diagonalization (5) provided only thatg2 > 0 [19]. The three non-zero diagonals in
equation (9) have to be compared with the seven-diagonal structure of the Hamiltonian in
the usual orthogonalized harmonic oscillator basis.

For g2 6 0 and at a special discrete set of the couplingsg1 the infinite-dimensional
tridiagonal secular Hill determinant factorizes and the recipe reproducesa partof the spectrum
correctly [18]. In all the other cases the WKB-compatible Lanczos basis ceases to be adequate.
The Hill-determinant recipe (6) loses its relation to the correct asymptotic boundary conditions
and the basis (8) must be regularized for certain hidden-symmetry reasons [20]. More diagonals
necessarily appear in equation (9). Otherwise, one gets incorrect results from the truncated
equation (5) even in its infinite-dimensional limit [21].

Virtually no similar constructions of our short-range hyperbolic oscillators seem to
appear in the current literature. Here we intend to explain the difference and develop a
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new semianalytic approach to equation (1). Our construction will fairly closely parallel the
formalism of the Hill-determinant method. In our second preparatory step the appropriately
modified choice of the Lanczos basis will be illustrated via the symmetrized Rosen–Morse or
scarf model of table 1.

2.3. P̈oschl–Teller example

Formula (1) withM = 2, attractionf = −λ(λ−1)andvanishingg = 0 defines the bell-shaped
and spatially symmetric P̈oschl–Teller wellV (PT )(x) = f/cosh2 x [22]. The functional form
of the optimal Lanczosean kets is more or less uniquely deduced, very much in the spirit of the
‘most ambitious’ WKB-like choice in equation (8) above, from the available exact solutions,

〈x|n〉 = ξn,p,q,κ (x) = sinh1−q x
coshκ+2n+p x

∈ L2(−∞,∞). (10)

All these basis states possess the even or odd parity atq = 1 or 0, respectively. Within this
subsection let us fixp ≡ 1− q. Then, the action of the full HamiltonianH(PT ) = −∂2

x +
V (PT )(x) on our symmetrized/antisymmetrized states (10) becomes particularly transparent.
For energiesE = −κ2, it is characterized by the mere two-diagonal matrix

Q(E) =


α0 0 0 0 . . .

β0 α1 0 0 . . .

0 β1 α2 0 . . .

. . .
. . .

 (11)

with the vanishing uppermost elementα0 = 0. The bound-state solutions (3) of our
Schr̈odinger differential equation read

1

h0
〈x|y〉 = |0〉 − |1〉 · β0

α1
+ |2〉 · β0β1

α1α2
+ · · · . (12)

As long as they are defined by the elementary two-term recurrences (3),
0 0 0 . . .

f + (κ + p)(κ + p + 1), −4(κ + 1) 0 . . .

0 f + (κ + p + 2)(κ + p + 3), −8(κ + 2) . . .

...
. . .

. . .
. . .



h0

h1

h2

...

 = 0

(13)

our solution|y〉 coincides with the Gauss hypergeometric series,

〈x|y〉 = h0 tanhp x
1

coshκ x
2F1

(
κ + p + λ

2
,
κ + p + 1− λ

2
; 1 +κ; 1

cosh2 x

)
. (14)

It is defined on a half-axis, say,x > 0. Fortunately, due to the manifest symmetry or
antisymmetry of the physical solutions, the necessary analytic continuation across the origin
proves equivalent to the termination of this infinite series. The well known Jacobi polynomial
solutions are obtained at each physical energy [8].
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3. Partitioned expansions

We may conclude that the description of bound states by the infinite series (3) proves easy
and efficient not only in the Hill-determinant setting of section 2.2 but also in an alternative
Jost-solution spirit of section 2.3. We intend to extend the parallelism far beyond the trivial
example of section 2.3.

The action of the kinetic energyT = −∂2
x on the basis (10) conservesboththe independent

parity-like parametersp and q. The same conservation law is obeyed by the single-term
symmetric potentialsV (M)s (x) = f/coshM x with the even exponentsM = 2K. The
rule is broken by the general Hamiltonians containing superpositions (1) of the symmetric
and antisymmetric componentsV (M)s (x) and V (N)a (x) = g sinhx/ coshN x, respectively.
Nevertheless, the full basis (10) numbered by a composite indexµ = µ(n, p, q) =
4n+2p+q > 1 (asξn,p,q,κ (x) ≡ 〈x|4µ〉,µ = 1, 2, . . .) proves reducible for all the single-term
potentialsV (N)s,a (x) = ±V (N)s,a (−x) of a definite parity.

3.1. Symmetric potentialsV (x) = V (−x)

We may choose the initial Lanczos ket|0〉 either as the spatially symmetric (and asymptotically
correct) element〈x|4µ(0,0,1)〉 ≡ cosh−κ x with p = 0 andq = 1 or as its antisymmetric
analogue〈x|4µ(0,1,0)〉 ≡ sinhx cosh−κ−1 x with p = 1 andq = 0. In both these cases, all
the Hamiltonian operatorsT + V (2K)s (x) become compatible with recurrences (2) in the two
alternative bases

|0〉, |1〉, |2〉, . . . = |4µ(0,0,1)〉, |4µ(1,0,1)〉, |4µ(2,0,1)〉 . . . ≡ |41〉, |45〉, |49〉, . . .

|0〉, |1〉, |2〉, . . . = |4µ(0,1,0)〉, |4µ(1,1,0)〉, |4µ(2,1,0)〉 . . . ≡ |42〉, |46〉, |410〉, . . .

with p = 1 − q = 0 or 1, respectively. After we abbreviateaj = −j (2κ + j) and
bj = (κ +j)(κ +j +1), this enables us to reproduce the two-diagonal Pöschl–Teller realization
of Q = Q(p) atK = 1,

Q(0) =


0 0 0 . . .

f + b0, a2 0 . . .

0 f + b2, a4

...
. . .

. . .

 Q(1) =


0 0 0 . . .

f + b1, a2 0 . . .

0 f + b3, a4

...
. . .

. . .

.

In the ‘first unsolvable’ case withK = 2 the couplingf moves one step down,

Q(0) =


0 0 0 0 . . .

b0, a2 0 0 . . .

f b2, a4 0 . . .

0 f b4, a6
...

. . .
. . .

. . .

 Q(1) =


0 0 0 0 . . .

b1, a2 0 0 . . .

f b3, a4 0 . . .

0 f b5, a6
...

. . .
. . .

. . .

.
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Partitioning indicated by the auxiliary lines tries to preserve the same two-diagonal pattern as
above. AtK = 3 we have, similarly,

Q(0) =


0 0 0 0 . . .

b0, a2 0 0 . . .

0 b2, a4 0 . . .

f 0 b4, a6

. . .
. . .

. . .

 Q(1) =


0 0 0 0 . . .

b1, a2 0 0 . . .

0 b3, a4 0 . . .

f 0 b5, a6

. . .
. . .

. . .


and so on. The dimension of partitions grows linearly withM = 2K asD = K.

The second series of the symmetric potentialsV (2K+1)
s (x) = f/ cosh2K+1 x with theodd

powersM = 2K + 1 must be investigated separately. It acts on our parity-preserving basis
in such a way that the conservation of the quantum numberp is broken. The following
q-preserving bases must be used,

|0〉, |1〉, |2〉, . . . ≡ |42〉, |44〉, |46〉, |48〉, . . . q = 0

|0〉, |1〉, |2〉, . . . ≡ |41〉, |43〉, |45〉, |47〉, . . . q = 1.

At K = 0 the new lower triangular matricesQ = Q[q] contain just the three non-zero
neighbouring diagonals. For preservation of the two-diagonal notation it is sufficient to switch
to theD = 2 partitioning. Similarly, a three-dimensional partitioning is needed atK = 1.
With the further increase ofK the dimensionD = 2K + 1 grows more quickly.

3.2. Antisymmetric potentialsV (x) = −V (−x)
The class of the antisymmetric forcesV (2L)

a (x) with L > 1 inter-relates the basis states with
different paritiesq. The value of the indexp is conserved,

V (2L)a (x)|4µ(n,p,q)〉 = (1− q)g · |4µ(n+L−1,p,1−q)〉 + (−1)1−qg · |4µ(n+L,p,1−q)〉.
The HamiltonianT + V (2L)a acts transitively on the following two reduced Lanczos bases:

|0〉, |1〉, |2〉, . . . ≡ |41〉; |44〉, |45〉; |48〉, |49〉; . . . p = 0 (15)

|0〉, |1〉, . . . ≡ |42〉, |43〉; |46〉, |47〉; |410〉, |411〉; . . . p = 1. (16)

Marginally, we may note that atL = 0 the structure of the matrixQ ceases to be
triangular. This seems closely related to the asymptotic asymmetry of theg1 6= 0 potentials
V [M](−∞) = −g1 6= V [M](∞) = +g1 and to their anomalous non-Jost solvability via a
change of variables atM = 2 (cf, e.g., [23]). In this subsection we shall assume thatg1 ≡ 0,
therefore. This constraint is further supported by the observation that atM = 1 the monotonic
V (1)
a (x) = g1 tanhx itself cannot generate any bound states at all. Thus, our study of the

antisymmetric models has to start at the exactly solvableV (2)a (x) = g sinhx/cosh2 x (cf
table 1).

This antisymmetric scarf (AS) potentialV (2)a (x) ≡ V [AS](x) is extremely suitable for
methodical purposes. Its significance is connected to the fact that our basis (10) is not tailored
precisely to its exact solvability. AD = 2 partitioning is needed. In the reduced bases (15)
and (16) its recommended boundaries are marked by semicolons. For all theL = 2, 3, . . .
descendantsV (2L)

a (x) of the AS example the sizeD of partitions will grow due to the downward
shift of the constantg again.

The action of the last classV (2L+1)
a (x) = g sinhx cosh−2L−1 x of the simplified single-term

potentials on the kets (10) looks irreducible. The impression is wrong. After we introduce a
new quantum numberI ≡ 2p + q (modulo 4), the basis elements withI = 0 and 3 never mix
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with their I = 1 and 2 counterparts. For both the initial choices of|0〉 = |41〉 and|0〉 = |42〉
we arrive at the same output,

|0〉, |1〉, |2〉, . . . ≡ |41 or 2〉, |45〉, |46〉, |49〉, |410〉, |413〉, . . . .
The difference between the two matricesQ will only lie in their elements.

3.3. Asymmetric Lanczos kets

Asymmetric oscillators (1) admit a non-conservation of parity by each Lanczos element|n〉
separately. The functions

〈x|n〉 = ξn,p,q,a,κ (x) = sinh1−q x
coshκ+2n+p x

ea arctan(sinhx) ∈ L2(−∞,∞) (17)

generalize theira = 0 predecessors (10) and represent a very good new candidate since, due
to the presence of a new parametera, the number of the new terms in equation (2) may be
lowered, for any potential (1), more efficiently. First of all, this implies that we may admit the
non-zerog1 again. Via a suitable choice of the value ofa we shall be able to reproduceall the
‘missing’ (namely Rosen Morse and scarf) terminating solutions of [2] or table 1.

At a 6= 0 also the action of an arbitrary hyperbolic Hamiltonian remains transparent and
elementary in the purely kinetic limit,

ξ ′′n,p,q,a,κ (x)
ξn,p,q,a,κ (x)

= (σ + q − 1)2 +
a2 − σ(σ + 1)− (2σ + 1)a sinhx

cosh2 x
+ (q − 1)

q − 2a sinhx

sinh2 x
.

Here,σ = σ(n, p) = κ+2n+p and the prime denotes the differentiation with respect tox. The
action of the purely kinetic HamiltonianT = −∂2

x on our innovated kets〈x|4µ〉 ≡ ξn,p,q,a,κ (x)
may employ the multi-indicesµ(n, p, q) = 4n + 2p + q again,

T |4µ(n,p,0)〉 = −(σ − 1)2|4µ(n,p,0)〉 + (2σ − 1)a|4µ(n,p,1)〉
+(σ 2 + σ − a2)|4µ(n+1,p,0)〉 − (2σ + 1)a|4µ(n+1,p,1)〉

T |4µ(n,p,1)〉 = −σ 2|4µ(n,p,1)〉 + (2σ + 1)a|4µ(n+1,p,0)〉 + (σ 2 + σ − a2)|4µ(n+1,p,1)〉.
The kinetic matrix elements ofQ depend onσ anda and all of them increase withn. Due to
the presence of the new parametera the kinetic operatorT inter-twines the states (17) with
different paritiesq = 0, 1. The states with differentp = 0, 1 stay decoupled.

3.4. Partitioned hypergeometric-like series

Our present proposal may be summarized as an application of expansions (3) to potentials (1)
inspired by the analogies between the Pöschl–Teller and harmonic oscillators. The feasibility
of our construction stems from the fact that the action of the present class of Hamiltonians on
the suitable Lanczos kets may be characterized by the lower triangular matricesQ(z). Their
partitioning brings us back to the two-diagonal pattern of equation (11) and replaces its scalars
αj andβj by the respective two-dimensional submatricesAj andBj ,

Q =


A0 0 0 0 . . .

B0 A1 0 0 . . .

0 B1 A2 0 . . .

. . .
. . .

. (18)
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In both the respectivea = 0 and a 6= 0 bases (10) and (17) theD-plets of kets
(|m + 1〉, |m + 2〉, . . . , |m +D〉) with m = m(n) = nD − d0 and with anyd0 may be denoted
as||n〉〉. In such an abbreviated notation our linear system (4) implies the recurrence relations

Fn ≡
 hm(n)+1

. . .

hm(n)+D

 = −(An)−1Bn−1Fn−1 n = 1, 2, . . . (19)

which define theD-dimensional vectors of coefficients in terms of finite products of certain
D×D-dimensional matrices. In place ofd0 = 1 in a consequentlyD-dimensional ‘democratic’
partitioning we may use the shiftd0 = D. Both these options appear in our AS example where
we recommendedd0 = D−p. The latter one is globally preferable as it leaves the uppermost
element ofQ vanishing,A0 = 0. The initial arrayF0 degenerates to the mere scalar norm
then.

At any d0 the formal solution (3) of the Schrödinger equation(H − E)|y〉 = 0 may be
rewritten in the form of the double or partitioned sum,

|y〉 =
∞∑
n=0

D∑
j=1

||n〉〉j [Fn]j =
∞∑
n=0

||n〉〉 · Fn. (20)

In a slightly vague sense it looks like an immediate hypergeometric-like generalization of
equation (14). Equation (19) defines all of its coefficients in closed form. They depend on the
‘measure of asymmetry’a and on the unknown energyE = −κ2.

4. Example

Our recipe strongly resembles the Hill-determinant method which proves useful in many (e.g.
perturbative [24]) applications. In the majority of similar applications one must analyse, first
of all, the convergence of infinite series (3) or (20). In thex-representation their pointwise
convergence is basically controlled by the asymptotics of the coefficients. They are dominated
by the purely kinetic terms which are asymptotically increasing. All the characteristics of the
potential itself (e.g. parity mixing) will play, necessarily, a secondary role.

The first non-trivial asymmetric potentialV [AS](x) seems best suited for a more explicit
illustration of this role. Its coefficientshj = h

(q)

j (p) in both thep = 0 and 1 solutions (3)
are easily derived from the respective recurrences. Choosing the simplesta = 0 and using the
same abbreviationsaj andbj as above we have

Q(0) =



0
g a1

b0 g a2

0 b2 g a3

−g b2 g a4

0 b4 g a5

−g b4 g a6

. . .
. . .

. . .
. . .


(21)
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Q(1) =



0
g a1

b1 g a2

− g b1 g a3

0 b3 g a4

−g b3 g a5

. . .
. . .

. . .
. . .


. (22)

The contribution of the couplingg is clearly separated from the growing and energy-dependent
kinetic terms.

After a return to the generala 6= 0 we just have to modify the values of the matrix elements
accordingly. We may preserve the reduction of bases (15) and (16) as well as theirD = 2
partitioning. It is obvious that the exact Jacobi polynomial solutions may be reproduced in our
D = 2 language. It is an instructive exercise to show how this reproduction proceeds. Firstly,
the variability of the parametera and of the energy or momentumκ enables us to achieve
a complete disappearance of the 2× 2 submatrixBK = 0 at an arbitrary optionalK. The
resulting series (20) then strictly terminates and reproduces the known Gauss hypergeometric
solution. Its termination just reflects the factorization of the secular determinant.

Let us underline that the simpler, ‘termination-incompatible’ basis (10) witha = 0 is
an analogue of the non-WKB bases in section 2.2. Hence, we may fixa = 0 and recall the
same AS model also as one of the simplest illustrative examples of a general non-terminating
solution.

4.1. AS oscillator in thea = 0 representation

The AS solutions (3) may be split into two separate sums with well defined parity,

|Y [AS]〉 = |Y [AS](p)〉 = |Y (even)(p)〉 + |Y (odd)(p)〉. (23)

The first few terms in the even partial sums withq = 1,

|Y (even)(0)〉 = |41〉 · h(1)0 (0) + |45〉 · h(1)2 (0) + |49〉 · h(1)4 (0) + · · ·
|Y (even)(1)〉 = |43〉 · h(1)1 (1) + |47〉 · h(1)3 (1) + |411〉 · h(1)5 (1) + · · ·

(24)

as well as their odd,q = 0 counterparts

|Y (odd)(0)〉 = |44〉 · h(0)1 (0) + |48〉 · h(0)3 (0) + |412〉 · h(0)5 (0) + · · ·
|Y (odd)(1)〉 = |42〉 · h(0)0 (1) + |46〉 · h(0)2 (1) + |410〉 · h(0)4 (1) + · · ·

(25)

are easily computed in the recurrent manner,

h
(1)
0 (0) = 1 h

(0)
1 (0) = −g/a1 h

(1)
2 (0) = −b0/a2 + g2/(a1a2) . . .

h
(0)
0 (1) = 1 h

(1)
1 (1) = −g/a1 h

(0)
2 (1) = −b1/a2 + g2/(a1a2) . . . .

(26)

A compact general determinantal formula for these coefficients also exists [15]. It would
enable us to rewrite equation (23), i.e.

|Y [AS](p)〉 =
∞∑
j=0

|4µ(j,p,1)〉 · h(1)2j+p(p) +
∞∑
j=0

|4µ(j+1−p,p,0)〉 · h(0)2j+1−p(p) (27)
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in the explicit form if needed. Here, we prefer the recurrent generation of the doublets of
coefficients

Fn+1−p = Fn+1−p(p) =
(
h
(0)
2n+1−p(p)
h
(1)
2n+2−p(p)

)
p = 0 or 1 n = 0, 1, . . .

as a matrix product,

Fj (p) =
[−Aj(p)]−1

Bj(p)Fj−1(p) j = 1, 2, . . . . (28)

In our partitioned notation withD = 2 the solution|y〉may be presented as a two-dimensional
hypergeometric series since its matrix coefficients remain surprisingly elementary,[−Aj(p)]−1 =

(
1 0
0 1/a2j+p

)(
1 0
g 1

)(
1/a2j+p−1 0

0 1

)
.

As long as 0> a1 > a2 > · · · at anyκ > 0, all our vectors of coefficients are well defined and
unique. Their initialization is provided by the ‘model space’ equationA0(p)F0(p) = 0 which
depends onp. At p = 0, we have the vanishing scalarA0(0) ≡ 0, while the exceptional singlet
F0(0) = h(1)0 (0) (conveniently put equal to one) is the norm. In the parallel two-dimensional
initialization atp = 1, the first componenth(0)0 (1) = 1 of F0(1) is the norm. The second
component must be recalculated,h

(1)
0 (1) = gh(0)0 (1)/(2κ + 1).

We are ready to prove the convergence. Its decisive simplification occurs in thej � 1
asymptotic domain. The upper and lower components of equation (28) decouple there in a
p-independent manner,[
Fj (p)

]
q

[
≡ h(q)2j+p+q−1(p)

]
=
[
1 +

1− 4q

2j
+O

(
1

j2

)] [
Fj−1(p)

]
q

q = 0 or 1. (29)

For both our infinite series (27) the proof is easy atx 6= 0. As long as coshx > 1 for all the
non-zero and real coordinatesx, the ordinary geometric criterion together with the estimate
(29) implies that our series (27) are convergent absolutely, i.e. for all the (complex) couplings
g and energies−κ2. The same geometric argument extends the validity of our conclusion to
all the complex coordinatesx + iy which lie outside of a wiggly bounded domain such that

| cosh(x + iy)| =
√

sinh2 x + cos2 y 6 1 or, in a cruder approximation, out of the fairly narrow

strip with |x| 6 ln(1 +
√

2) at least.
On the real axis, an indeterminate behaviour of the type 0×∞ emerges at the pointx = 0.

This follows from equation (29) and from the slightly more sophisticated Raabe criterion.
Strictly speaking, this forces us to work on a punctured domain ofx ∈ (−∞, 0) ⋃ (0,∞) in
principle. As a consequence, logarithmic derivatives of our left and right Jost solutions have
to be matched at the origin. This task is to be fulfilled numerically. Let us outline its two steps.

4.2. Generalized parity

Since ourD = 2 hypergeometric AS series〈x|Y [AS](p)〉 ≡ ϕ(p)(g, x, κ) (27) satisfy
the differential Schr̈odinger equation on a punctured domain(−∞, 0) ⋃ (0,∞) only, we
necessarily have to match them at the origin. In the Pöschl–Teller example of section 2.3
where the non-matrix Gauss solutions also developed a certain discontinuity at the origin at
a general unphysical energyE, the point has easily been settled after an account of parity.
As long as our potentials lose their spatial symmetry in general, the parity is broken and a
matching of the two sub-intervals(−∞, 0) ⋃ (0,∞) becomes non-trivial.
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We have to employ a broader invariance of our model(s) with respect to the productP̂

of parity P with the reflections of couplingsgj → −gj . The operator (such that̂P 2 = 1)
commutes with our Hamiltonian(s),H = P̂H P̂ . Each physical bound stateψ(x) may be
assigned an even or odd̂P -parity, P̂ψ(x) = ±ψ(x).

In a way resembling the parity-breaking systems withPT invariance [25] the assignment
of theP̂ -parity to our AS statesχ(g, x) depends on their normalization,

{P̂ χ(g, x) = ±χ(g, x)} H⇒ {P̂ [g · χ(g, x)] = ∓[g · χ(g, x)]}.
Fortunately, our AS coefficientsh(q)n (p) = h

(q)
n (p, g) are explicitly defined by the

triangularized Hamiltonians (21) and (22) and we immediately notice that

h
(q)

j (p,−g) = (−1)p+q+1h
(q)

j (p, g).

Both our AS hypergeometric-like seriesϕ(p)(g, x, κ) = 〈x|Y [AS](p)〉 (27) behave as
eigenstates of our double-parity operatorP̂ ,

P̂ ϕ(p)(g, x, κ) = ϕ(p)(−g,−x, κ) = (−1)pϕ(p)(g, x, κ).

With a pair of some constantsM 6=M(g) andN 6= N (g) we may postulate that the bound
states read

ψ [AS](x) =Mϕ(0)(g, x, κ) + g ·Nϕ(1)(g, x, κ) x 6= 0. (30)

The same (conventionally, even)P̂ -parity may be assigned to all our physical solutions since
their energy spectrum is non-degenerate.

4.3. Match in the origin

A return to the ordinary spatial parityP enables us to distinguish between the cosine-like (i.e.
spatially even) and sine-like (i.e. spatially odd) components of our generalized hypergeometric
functions (27),

c(x, κ) = 1
2[ϕ(0)(g, x, κ) + ϕ(0)(g,−x, κ)]

s̃(x, κ) = 1
2[ϕ(0)(g, x, κ)− ϕ(0)(g,−x, κ)]

c̃(x, κ) = 1
2[ϕ(1)(g, x, κ) + ϕ(1)(g,−x, κ)]

s(x, κ) = 1
2[ϕ(1)(g, x, κ)− ϕ(1)(g,−x, κ)].

The tildes̃ marking the asymptotical subdominance are not too relevant since we dwell in a
vicinity of the origin wherex = ±ε ≈ 0. Wavefunctions must be continuous there,

lim
ε→0+

ψ
[AS]
(physical)(ε) = lim

ε→0+
ψ

[AS]
(physical)(−ε).

The even, cosine-like components of our solutions satisfy such a requirement identically. In
the light of equation (30) we are left with a reduced continuity condition

Ms̃(ε, κ) + g ·N s(ε, κ) = 0 ε→ 0. (31)

In the same manner, the continuity of derivatives is required. In the uppercase notation with
abbreviations

S(x, κ) = 1
2[∂xϕ

(0)(g, x, κ) + ∂xϕ
(0)(g,−x, κ)]

C̃(x, κ) = 1
2[∂xϕ

(0)(g, x, κ)− ∂xϕ(0)(g,−x, κ)]
S̃(x, κ) = 1

2[∂xϕ
(1)(g, x, κ) + ∂xϕ

(1)(g,−x, κ)]
C(x, κ) = 1

2[∂xϕ
(1)(g, x, κ)− ∂xϕ(1)(g,−x, κ)]
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this leads to the second reduced matching condition

MS(ε, κ) + g ·N S̃(ε, κ) = 0 ε→ 0. (32)

In the limit ε→ 0 a rootκ(ε) of the two-dimensional secular equation

det

(
s̃(ε, κ) s(ε, κ)

S(ε, κ) S̃(ε, κ)

)
= 0

will determine the physical energy. Matrix elements of this secular equation are convergent
series int = cosh−2 ε < 1,

s̃(ε, κ) =
∞∑
n=1

h(0)n (0, g)t
n s(ε, κ) =

∞∑
n=0

h(0)n (1, g)t
n

S(ε, κ) =
∞∑
n=0

(κ + 2n)h(1)n (0, g)t
n S̃(ε, κ) =

∞∑
n=0

(κ + 2n + 1)h(1)n (1, g)t
n.

Normsh(1)0 (0, g) = h(0)0 (1, g) = 1 are fixed and the higher coefficients carry theκ dependence.
An analogy with the spatially symmetric Pöschl–Teller example of section 2.3 is fully restored.

5. Summary

We described a new approach to the Schrödinger bound-state problem with any Rosen–Morse-
like multi-term potential (1). For all these forces we have shown how:

• the ordinary differential Schrödinger equation for the wavefunctionsψ(x)may be reduced
to a linear homogeneous algebraic problemQ(E)Eh = 0;
• an ‘inspired’ choice of the Lanczos-like (i.e. Hamiltonian-dependent) basis makes the

related infinite-dimensional secular determinant vanish identically, detQ(E) = 0;
• the very special (namely lower-triangular) structure of our quasi-Hamiltonian matrices
Q(E) reduces the construction of the separate Taylor-like coefficientshn in our
wavefunctionsψ(x) to the mere (partitioned) two-term recurrences.

On a characteristic AS example we have illustrated that:

• all our solutionsψ(x) are convergent and may be understood as a certain generalization
of the Gauss hypergeometric series (which further degenerates to the Jacobi polynomials
at the physical energies in the solvable cases);
• a certain generalized parity symmetry of our forces enables us to determine Jost solutions

which are compatible withbothour asymptotic boundary conditions;
• via our final two-by-two condition (31) + (32), the values of the remaining two free

parameters (namely energy andp-mixing) in our Jost solutions may (and have to) be
tuned to their necessary continuity and smoothness at the origin.
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